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ABSTRAOT 

We show tha t  many  na tura l  classes of  actions of discrete subgroups  of semisim- 

pie Lie groups have discrete spectrum, i.e., are meMurably conjugate to iso- 
metric actions. 

1. S t a t e m e n t  o f  M a i n  R e s u l t s  

In this paper we describe a fundamental  feature of the measure theoretic struc- 

ture of certain smooth volume preserving actions of discrete subgroups of higher 

rank semisimple Lie groups on compact manifolds. This includes all actions in 

~low ~ dimensional manifolds, actions in which all elements act with sero entropy, 

and actions preserving a class of geometric structures. These results constitute 

a measure theoretic version of results conjectured to be true in [7,9] concerning 

the smooth structure of such actions. 

Suppose G is a locally compact second countable group and (X, p) is a stan- 

dard measure space with/~(X) = I on which G acts so as to preserve/~. A simple 

(but a p r ior /very  restricted) class of examples arises by considering a homomor- 

phism G --* K where K is a compact group, and letting X be a compact metric 

space on which K acts continuously. In this case, there is a K-invariant (and 

hence G-invariant) topological distance function on X. We say that  an action 

is measurably isometric if it is measurably conjugate to such an action. If the 

action is measurably isometric and ergodic, then (up to measurable conjugacy) 

we may take X = K/Ko where K0 c K is a closed subgroup. Thus, the measur- 

ably isometric ergodic actions (and via an ergodic decomposition any measurably 
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isometric action) can be completely described, up to measurable conjugacy, in 
purely algebraic terms. If the compact group K is actually profinite, we say that 

the action is measurably profinite. 

Returning to the general case, we let lr be the unitary representation of G on 

L2(X, ~) induced from the action. Following standard (but not entirely sati~ 

factory) terminology, we say that the action of G on X has discrete spectrum 

if L 2(X) is the direct sum of finite dimensional G-invarisnt subspaces. If the 

action is measurably isometric, then the Peter-Weyl theorem implies that the 

action has discrete spectrum, and it is s classical result of Mackey [1] (general- 

ising the corresponding result for integer actions of Halmos and von Neumann) 

that the converse is also true. In other words, one can characterize the spatial 

condition of being measurably isometric by the purely spectral condition of hav- 

ing discrete spectrum. An action is called weakly mixing if there are no finite 

dimensional G-invamixnt subspaces in L2(X) except C. In the case of integer 

actions this is, of course, equivalent to the non-existence of an eigenvector for 
tr(g), g E Z, which is in turn equivalent to the classical definition of weak mixing 

via the limits of certain partial sums. 

We also recall that for each g E G, there is the (Kolmogorov-Sinai) entropy 

h(g) ~ [0, co]. We say that the action has zero entropy if h(g) = 0 for aLl g ~ G. 

Actions with discrete spectrum have sero entropy, but for the integers there 

is a vast array of zero-entropy weakly mixing actions. In fact, from a purely 

measure theoretic viewpoint, by virtue of Ornstein's theory of Bernoulli shifts, 
the complication in classifying integer actions arises st the sero-entropy level (or 

more precisely, in studying extensions with sero relative entropy). One of our 
main results will be the assertion that for smooth actions on compact manifolds 
of certain discrete subgroups of Lie groups, sero entropy is in fact equivalent to 

discrete spectrum. 
We now give a precise description of the groups we will be considering and 

of the geometric aspects of our results. Let S be a finite subset of {c¢) U 

{primes in Z)  and for each p E S, let Gp be the set of Qp-points of a connected 

semisimple algebraic Qp-group, where Qp is the field of p-adic numbers if p is a 

prime and Qoo = R. We assume the Qp-rank of every Qp-simple factor of Gp is 

at least 2. We let G = IIp~s Gp, and shall abbreviate this situation by simply 

saying G is a semisimple group of higher rank. If 8 = {co), we say G is real, 

in which case G is an almost connected semisimple Lie group with finite center. 

In fact, for real groups we shall also allow any connected semisimple group with 
finite center such that all simple factors have R-rank at least 2, not just the 

algebraic ones. (Of course, any such group is algebraic modulo finite groups.) 
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If S = (p}, we simply say G is p-adic. Let F be a lattice in G, Le., a discrete 

subgroup such that  G/F has a finite G-invariant measure. The basic examples 

of such lattices are the S-arithmetic groups, and by a theorem of Margulis [2], 

[8] (which we will not be using) these are all the examples (in higher rank). 

THEOREM 1.1 : Let G be a higher rank semisimple group and I' C G a lattice. 

Suppose F acts smoothly on a compact manifold preserving a volume density. 

Then the fo//owing are equivalent: 

(a) The F action has zero entropy. 

(b) The r action is measurably  metric (or equi entlz has discrete sp - 
trum). 

(c) There is a F-invariant measurable Riemannian matric on M. 

The implication (a) =~ (c) is proven in [5]. (Actually [5] only considers the 

real case. However, these arguments work in general, using the results of [8, 

Chapter 10].) We have already remarked that (b) =~ (a). The main argument 

of this paper is to show (c) =~ (b). In [7] it is also shown that natural  geometric 

hypotheses on the action imply condition (c). Namely, suppose dim M = n and 
H c SL(n, R) is a real algebraic subgroup. If r preserves an H-structure on M,  

then by [7] either there is a non-trivial Lie algebra homomorphism 900 --* X, 

or the r action has an invariant measurable Riemannian metric. Therefore, we 

deduce: 

THEOREM 1.2:  Suppose every Lie algebra homomorphism 9oo ~ X is trivial, 

and that F preserves an H-structure on M. Then the F-action is measurably 

isometric. 

We present two special cases of particular interest. Let d(G) = min{d[ there 

is a non-trivial Lie algebra representation 900 --* 9l (d ,  C)}. 

COROLLARY 1.3:  / f n  < d(G), then any volume preserving action o f t  on a 

compact n-manifold is measurably isometric. 

If G is p-adic, then 900 = (0). Hence: 

COROLLARY 1.4: / f  F is a lattice in a higher rank semislmple p-adic group, 

then any smooth volume pre~_~vving action on a compact manifold is measurably 

isometric. In particular, there are no such wealdy mix/ng actions. 
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If G is real, simple, has a Q-structure with Q-rank at least 2, and I' is the 

arithmetic lattice Gz (e.g. Gz = SL(n, Z) where n _> 3), then every homomor- 

phism of Gz into a compact Lie group has finite image. Thus, every measurably 
isometric action is measurably profinite. For example: 

COROLLARY 1.5: Let P = SL(n,g) where n >_ 3. If M is a compact manifold 

of dimension d with d < n, then any smooth, volume preserving F-action on M 

is measurably proflni~e (and in particular is not wea/dy mixing). 

We have conjectured in [7, 9] that the conditions in Theorem 1.1 are in fact 

equivalent to the existence of a smooth F-invariant Riemannian metric, Le., that 

the action is isometric, not just measurably isometric. 

Our techniques in this paper also yield results for lattices in those R-rank 1 

groups with Kashdan's property. 

THEOREM 1.6: Let I' be a discrete Kashdan group. Then any smooth volume 

preserving action of F on a compact surface is measurably isometric. 

Our proofs depend very strongly on the local analysis that is available by as- 

suming the actions are smooth actions of manifolds. It would be very interesting 

to know whether or not conditions (a) and (b) in Theorem 1.1, for example, are 

equivalent outside the class of smooth actions. 
As we indicated above, the proof of Theorem 1.1 is reduced to showing that the 

existence of a measurable invariant Riemannian metric implies that the action 

is measurably isometric. For an action of an arbitrary group this implication is 
false. A. Katok has constructed volume preserving diffeomorphisms of compact 

manifolds which have a measurable invariant Riemannian metric but which are 
weakly mixing. However, all the results stated above follow from the next the- 

orem (when combined with the results of [5], [6], [7]). (In [6] it is shown that 

any Kazhdan group acting on a compact surface preserving a volume has an 

invariant measurable Riemannian metric.) 

THEOREM 1.7: Let P be a discrete Kazhdan group acting smoothly on a 

compact manifold preserving a smooth volume density. If there is a measurable 

F-invariant Riemannian metric then the action has discrete spectrum. 

The idea of the proof of Theorem 1.7 is as follows. Let m ~-* a~(m) E S2(T*M) 

be a measurable invariaat Riemannian metric. Extend each a~(m) to a smooth 
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metric c0m defined in a neighborhood of m E M. Fix r > 0, and for each m, 

let f,,~ E L 2 (M) be the normalized characteristic function of the ball of radius 

r centered at rn with respect to the metric win. Define F, E La(M x M) by 

Fr(rn, zJ = f,,~(z). Fix a finite generating set Fo c F and let 6 > 0. By 

virtue of the invariance of w(rn), one can show that  for r sufficiently small we 

have I1 " F, - F II < ~ for ~ / E  F0. In other words Fr is (F0,6)-invariant. 

By Ka~hdan's property, if we choose 5 sufficiently small this implies that  F~ 

is close in L2(M × M) to a l~-invariant function. One can verify that  this is 

not a constant function which yields the existence of some non-trivial finite 

dimensional ILinvariant subspace in L2(M).  One then needs to see that  this 

general construction can be carried out so that  these finite dimensional subspaces 

generate L 2 (M), an issue which presents further non-trivial complications. 

2. G e n e r a l  P r o p e r t i e s  o f  M e a s u r a b l e  A c t i o n s  o f  K a z h d a n  G r o u p s  

In this section we formulate some consequences of Ka~hdan's property for a 

group acting on a measure space. Throughout  this section F will be a discrete 

Kazhdan group and Fo C F a fixed finite symmetric generating set. If (N, v) is a 

probability space and B c N has positive measure, we let vB be the probability 

measure vB (A) = v(A N B) /v(B) .  

PROPOSITION 2.1 : Suppose 0 < q < I. Then there is some • > 0 such that 
[or any measure preserving r -act ion on a probability space (N, v) and any set 

D c N with vD('~DAD) >_ 1 - e / o r  a//-y E F0, there is a F.invariant set Y c N 
satisfying ~y (Y n 9) ,  ~D (Y n D) > q. 

For the proof, we first recall that  Kazhdan's property asserts that  there is 

some • > 0 such that  for any unit vector f in a Hilbert space on which P 

acts unitarily via ~r with no non-trivial invariant vectors, there is some ~/E r0 

such that  II~r(~/)f - fll ~ ~. ( See [8].) This immediately admits the following 

reformulation. 

LEMMA 2.2 :  Given any 6 > 0, there is some ~ > 0 such that  for any unitary 

representation (~v, H) of F and any (6', Fo)-invariant unit vector f E H, there is 

a P-invariant unit vector h G H with IIh - .fll < 5. 

Proof." Let • be as above. If / is an (e/n,  l~o)-invariant unit vector, write f = 

fo + f l  where [o E Ho, the space of I'-invariant vectors, and /1 .1_ Ho. Then 

f l  is (e/n, Fo)-invariant, and since Ho -L has only trivial I'-invariant vectors we 

have [l~r(~/)/z - f l [ [  >- ~[[fl[[ for some "7 ~ Fo. By 6/n.invamiance, we deduce 
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• / n  > .llAII, so Ii/111 -< 1/n. Therefore, llfo[[ 2 > 1 - 1 / n  2, I [ / -  foil 2 < 1/n ~ and 
letting h = fo/llfoll, it is clear that  for n sufficiently large we can take d = *In. 

O 

Proof of Proposition 1.2: Given 0 < q < I, let 6 > 0 satisfy q < (1-6)(1-61/2)  2 

(and in particular q < (1 -6 ) . )  Let d be as in Lenuna 2.2 for this choice of 6 and 

set • = d / 2 .  If A c N, let fA be the normalised (in L 2) characteristic function 

of A. Thus, /A [ A = v(A) -1/2 and fA I A¢ ----- 0. Since r preserves v we have 

[IfD - f~DII ~ = v('lD A D)/v(D).  

By the hypotheses on D we deduce that  f o  is an (d,  F0)-invariant unit vector. 

By Lemma 2.2, we can choose a unit vector h • L2(N) that  is F-invariant with 

[I h - / a l l  < 6. Let 

Y = {x • Nlh(=) >_ (1 - ~ I / 2 ) v ( o ) - l / 2 } .  

Then Y is r-invariant and on D n y c  we have 

Therefore, 

and so 

and 

Ih - / D I  2 >_ 6v(D) -1. 

a~ ~ lib - fDII ~ ~ a~(D)-~v(D n Y~), 

v ( D N Y ' )  
~,(D) <- ~ 

v(D n Y) 
v(D) >_ 1 -  6 > q. 

On the other hand, we have f y  h 2 <_ 1, so 

( 1 -  6112)2v(D)-Iv(Y) <_ 1. 

Therefore 
v(Y) -1 _> (I - 61/2)2v(D) - I  

and so 

v(D N Y) v(D N Y)(1 - 51/2) 2 > (1 - 5)(1 - 61/2) 2 > q. 
v(Y) > ~(D) 

[] 

We will be applying Proposition 2.1 to the case in which N = X × M where 

X and M both have r-invariant probability measures and the r action on X is 

ergodic. To this end, we record the following elementary fact. 
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LEMMA 2 .3 :  F / x 0  < q < 1, a n d 0  < ~ < 1. Then there is someq t  with 

q < q' < 1 , . ~  that to,  a n y / :  X -~ [O, 1] with f / ( x )  > ¢ we h a ~  ~({xl/(~) -> 
q}) >- 7. (Here we are assuming {X,/~) is any probability space.) 

Proof: We have 

qpCf-l([O, q])) + / ~ ( f - l ( l q ,  1])) _> f: q,. 

Thus, for ~ = ~ ( / - ~ N ,  1]), we have 

q(1 - ~) + ~ _> qt, 

$0 qt 
ct> - - q .  

-- 1 q 

Thus, we need only choose q' < 1 such that (4  - q)/(1 - q) _~ ~/. [] 

We now consider two F-spaces X and M with invariant probability measures. 

I f A c X × M a n d z E X ,  w e l e t A ~ , = { m ~ M l ( z , m ) ~ A } .  

COROLLARY 2 .4 :  Suppose (X, po) and (M,/~) as above and that r acts er- 

godically on (X, po). Let N = ( X  × M, u) where u = Po × I~. Given any 0 < q < 1 

and any 0 < 17 < 1, there is some • > 0 with the [ollowing property: For any set 

D c X x M satisfying 

(a) v("tO A D ) / v ( D )  > 1 - e for - / e  to ,  and 

(b) I~(D=) is independent of z E X (and hence equals v(D)) ,  

there is a P-invariant set Y c X × M such that 

~,(Y=) - q' ~,(D=) 

Proof: Given q and t /choose qt as in Lemma 2.3. Apply Proposition 2.1 to qt 

to find e. Then if D c X × M satisfies (a) and (b), we have a P-invariant 
Y c X × M such that  

v ( V n D )  v ( Y n D )  > ql. 
v(Y) ' v(D) 

We observe that  z ~ /~(Yz) is r-inv~-,~mt since Y is F-invariant, hence by 

ergodicity is constant, and that this constant must then be v ( Y ) .  Thus 

f /~(Y= N D®) 1 v(Y N D) 
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One has a similar assertion for p(Yffi 0 Dz)/p(D=) by hypotheses (b), and the 

result then follows from the conclusion of Lemma 2.3. [] 

8. C o n s t r u c t i o n  o f  A l m o s t  I n v a r i a n t  Se t s  

We now return to the situation in which (A/, p) is a compact n-dimensional 

manifold with a smooth F-invariant probability measure, and for which there is a 

measurable F-invariant Riemannian metric. We shall use a Taylor series estimate 

and Corollary 2.4 to produce small r-invariant measurable sets in M × M that  

are not too badly behaved with respect to balls in M. 

We choose a point p E M. For simplicity we may assume p -- 0 E R ~ and 

that  M contains a neighborhood of 0 in H ~'. By Moser's theorem [3] we may 

assume p is the standard Lebesgue measure on this neighborhood of D. We 

then fix a smooth Riemannian metric on M which is the standard fiat metric in 

a neighborhood of 0. We denote by B(z,  r) the ball of radius r centered at z with 

respect to this metric. We may assume that  the smooth measure associated to 

this metric is p. We let Jk(M) ~ M be the vector bundle of k-jets of R-valued 

functions on M. The Riemannian metric on M determines a metric on these 

bundles, and if ~ G Ditf~,(M) (the diffeomorphisms preserving/~) we denote by 

IIP]lk the norm of the linear map ~ induced on C(M; J~M), the Banach space 

of continuous sections of the bundle JkM.  Let Do = {~ E Diff~(M)lto(0 } = 0}, 

Jk(Do) the group of k-jets at 0 of elements of Do and p~ : Do ---* Jk(Do) the 

canonical projection. Let z ~-* hffi be a Borel map M --* Diff , (M) such that  

(i) h (x) = o, 
(ii) {[[h=l[2 , [Ih:lll2l x E M }  is bounded.  

The existence of such a map follows in a routine manner from compactness of M. 

Define ~('y, z) -- h~, o7  oh~ -1, so that  ~,: 1 ~ × M ---, Diffl,(M ) is a Borel cocycle. 

Clearly ~ ( r × M )  c Do, and if r0  c r is a finite set, then {ll~ll2 I~ ~ ~( r0  × M ) }  

is a bounded set of real numbers. 

The cocycle I)2 o a : r × M ---, J2(Do) is measurably equivalent to a cocycle 

into a compact subgroup of J2(D0).  This follows from the facts that:  

(a) The existence of a measurable invariant Riemannian metric on T M  is readily 

seen to be equivalent to the assertion that  Pl o a is equivalent to a cocycle 

taking all values in a compact subgroup K1 of J l (D0) ;  

(b) J2(Do) ~- Jl(Do) ~< V, where V is a vector group; and 

(c) KI  ~< V is amenable, and hence any cocycle for a Kazhdan group taking 

values in K1 b< V must be equivalent to one t~lclng values in a compact 

subgroup. This last assertion is [8, Theorem 9.1.1] (cf. [7], Prop. 4.7). 
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We axe not assuming tha t  the smooth measure # is ergodic. We fix a P-ergodic 

component  (X, #o) of (M, #) for which the cocycle p2 o ~ is still equivalent to 

one into a compact  subgroup K of J2(Do). (This will be  true for almost every 

ergodlc component.)  We may  clearly assume tha t  K c O(n) c J2(D0) ,  where 

we identify O(n) with the 2-jets of orthogonal linear maps.  We can in fact just  

let X = M,  and view po as simply another F-invariant probabili ty measure on 

M for which P2 o a  is equivalent to a cocycle into K C J2(Do). We shall continue 

to denote M by X when we are considering it to be endowed with the measure 

#0. We note tha t  we have no a priori smoothness properties of #0. 

We now implement the equivalence of P2 o a to a cocyc]e into K by a function 

~b. In other words, we choose a measurable ~b : X -4 32(Do), x ~-* ~z ,  such that  

D 

Lift ~b to a measurable map ~b : X ---, Do. Then define the cocycle a : I" x X -4 Do 
by 

~(-y, x) = ,~ .~ ( .y ,  ~),~21 = ( ,~= o h ~ )  o .~ o (,~= o h=) -~.  

Define A : X --, R by 

~(~) = m~x{ll~= o h=l12, II(~- o h=)-1112}, 

so tha t  ~ is a measurable function, and A(x) _> 1 (since these diffeomorphisms 

are all volume preserving). 

THEOREM 3 . 1 :  Let )~ be as above and 6x 1/2 < q < 1, and 0 < ~/ < 1. 

Then for any r > 0 sutt~ciently sma//, there is a F-/uvariant measurable  subset 

y r  c X × M (depending upon r) and a measurable  subset X r c X (depending 
upon r) such that: 

( 0  ~,o(X') > . .  
(2) For all x G X" 

(3) For all z E X r, 

~(Y; n B(x, ~(x)r)) _> q- 

~(r,) 

~(Y; n B(x, ~(x),}) > co~(~)_ ~ 
#(B(x, A(x)r)) - 

where co is a constant (independent of r and depending only on the original 

choice of smooth Riemannian metric on M) ,  and n = dim M.  
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Proo[: Given q and ~, choose e as in Corollary 2.4 when the lat ter  is applied to 

q and -~2  +1 . Now choose a set X1 c X such that  for Xo = [ ~ e r o  ~X1 we have 

maxl  ~/+ 1 • p0(Xo) > C - ~ - ,  1 - ~ )  

and such that  A is bounded on X1. From the definition of ~ it follows that  there 

is a constant ~o e H such that  [[g('y, z)[[2 ~ ~o for all z • Xo and all -~ • to .  

For each ~o • Do such that  p2 o ~o • O(n} c J2(Do), from the Taylor series 

expansion around 0 we have for z in a fixed neighborhood of 0 (independent of 

~o), that  ko(z)[ <_ Ixl + II~hlxl 2 Thus, for r sufficiently small, we have for all 

~o • ~ ( ro  × Xo) that  

~(B(o , , ) )  c B(o , ,  + ~o,~). 

Assuming (as we may) that  Lebesgue measure is suitably normalized, we have 

p(B(0,  r)) = r '~. It follows that  we can find rl  so that  for r ~ r l ,  

~(B(o,r)) _ ,-'~ > 1 -  -~. 
~(B(o,~ + ~o,2)) (~ + ~o,~) ~ - 4 

Since any ~o • a(Po × Xo) preserves p, we also have 

~(~(B(0 , . ) ) )  >i__~ 

~,(B(o,, + ~o:)) - 4 

for any such ~o and r < r l .  Since both B{O,r) and ~o(B(O,r)) are contained in 

B(0, r + ~or2), we deduce 

~(B(o, ~) n ~o(a(o, d)) > I - -~ 

~ ( ~ ( 0 , .  + ~o.~)) - 2 

It follows that  
~(B(O, r) N ~(B(O, r))) > 1 - • 

~(B(0,d) - 2 

as well. 

We now use this to construct a set D c X × M satisfying the hypotheses of 

Corollary 2.4. Fix r _< r~. For z • X, let D= = (~ffi o hffi)-lB(0, r} c M. Then 

p(Dz)  = p(B(0,  r)) for all x. If x • X0 and '7 • to ,  then 

. ( ~ o .  n D~.) = . ( ~ ( ~  o h . ) -*~ (0 ,  d ~ ( ~  o h~ . ) -*a (  0, d)  

and since ~b~ o h,~ffi preserves p this 

= ~(a(~, ~)B(0, r) ~ B(0, r)} 

> (1-  ~)~(B(o, d) 



Vol. 7$, 1991 ACTIONS OF KAZHDAN GROUPS 75 

by the preceding paragraph. It follows that  

• 0 p(('yD).I= A D.I= ) >_ ( 1 - ~ ) p ( B ( , r ) )  

and therefore that  

Since 

f 
//('7D n D) = .[~((~D). n Df)d~o(=) 

> ( i  _ e  _ ~)~,(B(o, .))~o(X0). 

f 
v(D) = / .(Dr)d~o(=)= ~(B(0,=), 

and po(X0) > 1 - ~, we have 

u(~D A D) 2 • u(D) _>(1- )(1-~)_>1-e. 

Applying Corollary 2.4 (and recalling that  • was chosen to work for the pair 

(q, n-~-!2 z)) , it follows that  for any r < rz we have a F-invariant set Y" satisfying 

the conclusions of Corollary 2.4 for a set of x of po-measure at least 1 +  ~2" Since 

/~0 (X01 > ~ as well, we deduce that  there is a set X r c X (in fact X r c Xo) 
with po(X r) > ~ such that for x E X ' ,  we have 

(i) ~(Y;  n D , ) / ~ ( Y ; )  > q, 

(~) ~(r~ n D=)/~(D,) > q. 
From the definition of D= and A(x), we see that  D= c B(z,  A(x)r) and hence 

assertion (i I implies conclusion (21 of Theorem 3.1. It remains only to prove (3 !. 
By what  we have just  verified, 

~(Y; n .(=, ~(=).)) > ~(r ;  n D.) ~(D.) 
j,(B(=,;~(=),-)) - ~,(D.) ~(B(=,;~(=),-)) 

>q .(B(0,.)) 
- ~(B(., ;~(~.),-))" 

The proof is then completed by the following remark. 

LEMMA 3.2: Let M be a compact Riemaanian n-man'old with volume lz. 

Then there is some constant Co such that for all r sufflcJentl¥ small, we have for 

m I , m 2  E M and  ~1~ ~ ~_~ 1 that 

~(B(,~I,,)) > oo~-". 
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Proo[: This is clear in Euclidean space. By a local uniform comparison with a 

fiat metric, it will be true locally. Compactness then ensures it is true on all M. 

[] 

4. P r o o f  of  Theorem 1.7 

The simple existence of a non-triviM r-invariant set Y in X )< M (which is guar- 

anteed by Theorem 3.1) is enough to show that there is some discrete spectrum 

in L 2 (M). We shall in fact prove the entire spectrum is discrete by making use 

of the additional information in Theorem 3.1. 

We let (Z, p) be the maximal measurable factor of (M, p) with discrete spec- 

trum. That is, we have a F-space Z with invariant probability measure p, and a 

measure preserving F-map M --~ Z such that under the corresponding inclusion 

L2(Z) ~ L2(M), L2(Z) is the closure of the sum of all finite-dimensional r-  

invariant subspaces of L2(M). Such an (essentially unique) Z exists by [4, Thm. 

7.1 ]. Our aim is to show M = Z. 

For z E Z, let Mz be the fiber over z and if A c M, let Ax = A N Mz. Let 

P = fe pzdp(z) be the decomposition of/~ over the fibers of M --* Z. We can 

write Z = UZ~, i E {oo}U{n E l l n  >_ 0} such that card(Mz) = i i f z  e Zi. From 

this it is easy to see that if M ~ Z, we can fix a set A c M with 0 < p(A) < 1 
such that if Zo = {z e ZIAffi ~ ~}, then #ffi(Az) is constant over z E Z0, and 

this constant is not 0 or 1. Define 0 : M ---, R by defining 0z = 0[Mz to be 
Oz = XA, --#z(Affi). Therefore, there are constants c, c t > 0 and a decomposition 

M = A U A ' U A "  such that 0[A = c, 0[A ° = -c ' ,  0IA" = 0. Furthermore, 

8 L L2(Z) C L2(M). We fix such A,O,c,d throughout the remainder of the 

proof. 

If [ E L2(X×M)  is r-invariant, let TI : L2(M) ~ L2(X) be the corresponding 

integral operator. Then T~T I is a compact self-adjoint operator in L2(M) whose 

eigenspaces for non-0 eigenvMues will be finite dimensional r-invariant subspaces. 

Since these are all contained in L2(Z) and 0 _1. L2(Z), it follows that we must 

have 0 E ker(T~Tl) = ker(Tl) for may such f .  To prove the theorem, it therefore 

suffices to construct such an f for which 0 ~ ker(Tl), thereby contradicting 

M ~ Z. We shall do this by taking f to be the characteristic function of a 

suitable set y r  constructed in Theorem 3.1. 

We first choose q and W in Theorem 3.1. First fix 1 > 8 > 1-/~o(a)/8.  (By 

a suitable choice of ergodic component p0, we may assume p0(A) ~ 0.) Now 

choose Xt c X such that po(X1) > ~ and there is k E R with A(z) ~_ A for all 
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z E X1. Then choose q so that 

max((c, c'})(1 - q) <_ ccoA_n/4 
q 

(where c, c' are as above and Co is as in Theorem 3.1). We claim that for this 

choice of ~ and q, by taking r sufficiently small 0 ~ ker T!, for / = X~... 

By the Lebesgue density theorem, for p-almost all z E A we have 

Hm p(A n B(z, r)) _- I. 
,--o /~(B(z, r)) 

It follows that for almost all r-ergodic components of (M,/z) this same limit 

exists almost everywhere with respect to the ergodic component. Therefore, we 

may suppose that the ergodic component (X,/~o) of (M,/z) was chosen originally 

so that for/~0-almost all z E A, 

Jim p(An B(z,r)) = 1. 
,-~o ~(B( , , , ) )  

Define, for ~0 < 1, 

Aw,,-~ {zEAI I~(ANB(z's)) >w forallO<s<r}. p(B(z,s)) 
Choose w < 1 such that ( 1 - w ) ( c ÷ c ' )  ~ ccoA-n/2. Then there is some P~ such 

that if r <_ P~, we have ~o(A~,,) >_ ~o(A)/2. 
FinMly, choose r > 0 such that 

(a) Ar < Rw; and 

(b) the conclusions of Theorem 3.1 hold with the above choices of T/and q. 

We then have po(X r) > 1 - p o ( A ) / 8  (by choice of r/), po(Xl) > 1-/~o(A)/8 (by 

choice of XI), and/Zo(Aw,Ar) ~ po(A)/2. It follows that po(A~,A,nXrnXI) > 0. 
For ease of notation, with r thus chosen, we set y r  = y .  We show 0 ~ ker T! 

for / = Xy. To do this it suffices to show that if z E A~,Ar n X r N X1, then 
(r!o)(~) ~ o. 

We have 

(T:)(~) = / S(~, ~)o(~) d~(~) 

-- fy S 

= / 1 + / 2  
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w h e r e  

I1 = nB(.,,x(-),-) -Y.nB(,~,x(,~),} 

Recalling that OIA = c, OIA' = - d  and OIA" = O, we have 

I~ = ~,(Y, n B(x,~(~)r) n A) - ~'~,(Y, n s{-., ~(~)r) n A'). 

Since z e A~,Ar and ~(z) < A (since z e X1), we have 

p(B(z, ~(z)r) n A) 

and since z E X ~, we have 

~,(Y~ n B(:~, ~(x)d) > ~o~(~)_~ > ~oA_~. 
~,(B(x, ~(~)r)) - 

Therefore 

cp(Y• N B(z,  A(z)r) n A) > c(coA -n  - [1 - wl)/~(B(z, ~(z)r)). 

For the second term in 11 we observe 

p(B(z, A ( z ) r )  n A')  < 1 - w.  

Therefore 

-ctp(Y= n B(z,  A(z)r) n A t) > -c ' (1  - w)/~(B(z, A(z)r)). 

Hence 

z~ _> [~oA- "  - (1 - ~)(~ + ~')]~,(~(=, ~(=)d)-  

By the choice of oJ, we deduce 

11 > ccoA-" 
T ~ ( B ( x , ~ ( x ) d ) .  

To estimate 12, observe that  from Theorem 3.1 we have 

~ ( Y . )  

SO 
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Therefore, 

IX~l __ max({c, c'})(1 -- q)P(Ys). 

We also have 

. ( y . )  < ~(Y~. ,--, B ( x , ~ ( . ) . ) )  < . ( B ( x , ~ ( . ) . ) )  
q q 

Hence 

]I21 ~ max({c ,c ' } )~ '~P(B(z ,A(z)r ) ) .  

By the choice of q we then have 

ccoA - n  
It21 < 4 ~,(B(~,~(~),))  

This shows 

Iz + I2 > CCoA-" 
4 #(B(x,~(x)r)) ,  

and this completes the proof of the theorem. [] 

5. Further Questions 

Are there smooth volume preserving actions of Kuhdan groups on compact 

manifolds which have zero entropy but do not have discrete spectrum? For 

lattices in a higher rank of groups, Theorem 1.1 asserts that this is not the case. 

The additionM information one has available in the higher rank case is of course 

deduced from superrigidity for cocycles. 

Does every measure preserving zero entropy action on a compact metric space 

of a lattice in a higher rank group have discrete spectrum? More generally, is 

this true for Kazhda~n groups? 
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